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CLUES IN THE RARE GAS ISOTOPES TO EARLY SOLAR SYSTEM HISTORY,

John H. Reynolds

Department of Physics, University of California

Berkeley, California 94720

It is a great pleasure to be in Moscow presenting the results of our

research. It is my first visit to the Soviet Union. Those of us who work

with rnre gases in meteorites and lunar samples have been stimulated by pro-

gress in our subject in the Soviet Union. We remember well the work of Gerling,

Pavlova, and Rik (1 ) who in 1951 and 1956 initiated potassium-argon dating of

meteorites which has become an area of great importance. And it was Gerling

and Levskij (2 ) in 1956 who made the striking discovery of the existence of

gas-rich meteorites, one of the first manifestations of what we now know to be

the solar wind. These two results alone have placed Soviet workers in the

forefront of my field. We have also been privileged in my laboratory to work

with lunar samples returned by the Luna 16 and Luna 20 landers.

Today I am going to be talking about work which goes back as far as 1959

and will be in part known to many of you but which I think is still worthy of

review, especially in a setting where I can speak somewhat informally and can

give you my latest and less tested thoughts on interpretations because of that

informality.

I first want to review the results we have obtained with the extinct

radioactivity iodine-129. I remind you that this is a radioactivity which is

produced in the r-process of nucleosynthesis and which decays with a halflife

of 17 million years (m.y.). Consequently we can expect this radioactivity to

have been present in the early years of the solar system with its concentration

relative to normal 127I changing by a factor of 2 every 17 m.y. In principle,

then, it provides a clock which is sensitive to small time changes even though
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the events it records took place 4.6 aeons (1 aeon = 109 years) ago. Figure 1

is an old one which many of you know well but it still makes its point. It is

a xenon spectrum taken in 1959 from the Richardton chondrite. The small

horizontal lines show where the peak tops would fall if we were examining a

sample of xenon from the atmosphere. By far the largest deviation from this

atmospheric composition occurs at mass 129 where there is a pronounced "spike"

of excess gas. Since 1959 this pattern has proved to be a quite general pro-

perty of meteorites and has led us to explore what we call the iodine-xepon

method of dating. In order to carry this method out with some precision, we

irradiate the material with slow neutrons, thereby converting part of the ordinary

127I into 128Xe. We follow this irradiation with a step-wise heating of the

meteorite, examining the isotopic composition of the xenon given off at succes-

sively higher temperatures. Typically we enter a high temperature regime in

which the release of excess 129Xe correlates with the release of excess 128Xe

produced in the pile. This correlation is best demonstrated by a plot which is

shown in Figure 2 where we graph the ratio 129Xe/ 132Xe versus 128Xe/132Xe. The

meteorite in question is the Shallowater enstatite achondrite. (3 ) The numerals

on the points are the temperatures at which the gas was released in hundreds of

degrees Centigrade. We see that above 1000C there is an almost perfect correla-

129 128
tion between the release of excess Xe and excess Xe. From the slope of

this line plus data about the neutron irradiation it is possible to deduce that

129 127 -4
the initial ratio of 1 to I for this meteorite was 1.1 x 10- . By exposing

different meteorites to the same neutron irradiation it is possible to measure

time differences very directly by this method. Figure 3 shows how we infer a

difference in time of formation between the Karoonda carbonaceous chondrite of

petrologic type-4 and the Peia Blanca Spring enstatite achondrite. Both these



-3-

meteorites provide a good correlation line and we infer a differcnc in 1th

initial1. 2 1/ 1271 raLio which corresponds to a time dll'-IercIC I 1of /.', m.v\. In

a study completcd In L970 I'odosck (4) assembcd an array oi tl cs, I t cJdl I-x(,l.

ages which is shown in Figure 4. An important observation to be made from tlisc.

results is that despite the presence on the diagram of very diverse meteorites --

including chondrites, achondrites, and a silicate inclusion from an iron meteor-

ite -- the total spread in time inferred by this method is quite short, amounting

to only 14 m.y. We have referred to this result (5) as "sharp isochronism" for

the formation of the meteorites. We have thus far not been able to determine very

meaningly the detailed time differences occuring in the Figure. Nevertheless

there are some individual results which we find significant. Figure 5 siows ;J

recent result obtained in joint work between my laboratory and that of Professor

(6)
Anders at the University of Chicago. Professor Anders and his co-workers

learned how to isolate magnetite from carbonaceous chondrites and we have found

that this mineral is favorable for iodine-xenon dating. You will note that we

obtained an excellent correlation for magnetite from the carbonaceous chondrite

Orgueil. When placed in the scheme of relative ages that we saw in Figure 4,

Orgueil magnetite appears to be the earliest or most primitive object dated so

far but separated in time from the Karoonda stone by only 1.8 m.y. There are

two important inferences to be made from this result. First, the carbonaceous

chondrites are basically contemporaneous with the rest of the meteorites.

Secondly, if there is an evolutionary relationship between the petrologic type-4

chondrites like Karoonda and the more primitive type-l carbonaceous chondrites

like Orgueil, this evolution took place with rapidity -- that is within about

2 m.y. Another detailed result of iodine-xenon dating which appears significant

to us is shown in Figure 6 where we exhibit the attempt to establish one of
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these iodine-xenon correlations for the meteorite Manych, a sample of which

we received for this purpose through the generosity of Professor Krinov. Manych

is an exceptionally unequilibrated meteorite; it is basically an assemblage of

fresh chondrules. It is interesting to us that we were not able to obtain an

ied:it,e-xenon correlation for this stone, ( ) suggesting that the individual

chondrites which made it up had different times of origin so that there was not

a single event which we could date. The very well defined correlation for the

Abee enstatite chondrite is also shown in Figure 6 by way of contrast. In Abee

we have an almost perfect correlation -- in Manych, none at all. Before leaving

the topic of iodine-xenon dating I want to comment that the correlation, when

it occurs, seems to be extremely durable. Hohenberg and I(8) investigated this

question in 1969. We took a sample of the Abee stone and heated it to 12000 in

vacuum for one hour before carrying out the neutron irradiation. We knew from

experience that this pre-heating would drive out about 90% of the xenon. We

anticipated, therefore, that the iodine-xenon correlation would be largely des-

troyed. To our surprise when we examined the pre-heated sample, even though as

anticipated the xenon had been very largely expelled, the residual xenon which

came off at temperatures of 12000C and above exhibited exactly the same correla-

tion as the sample which had received no pre-heating whatsoever. That result

is shown in Figure 7. Professor Wasserburg likes to use the word 'magic' to

describe this durable correlation. Upon reflection I think we have to say that

this durability is not magic at all but simply a consequence of the fact that

wherever the iodine is located in these objects, that part of it which is not

disturbed until very high temperatures behaves exactly the way xenon does when

similarly located. In other words the retentively sited iodine appears to be

caged in the very durable minerals in such a way that it makes no difference, as
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to its release, whether it has changed into xenon or not. This supposition is

important for interpreting the results of our work because it says that the

iodine-xenon date of a meteorite is very little disturbed by heating. This

may account for the fact that these dates comprise a compact group: the iodine-

xenon clock is very difficult to reset. We could feel more confident of these

assertions if we understood better the location of the retentively sited iodine

in these objects. Unfortunately we still know very little about its location.

Possibly the ion microprobe which is beginning to come into use in research may

prove useful in this connection.

Another important chapter in the study of extinct radioactivities concerns

the radionuclide 244Pu. As early as 1960 Kuroda(9 ) recognized that if we were

correct about our interpretations of the excess xenon-129 found in meteorites

we should also expect to find fissiogenic xenon ,in these objects from the decay

of 244Pu, which disintegrates in part by spontaneous fission. Kuroda could make

this observation with great certainty because 244Pu would undoubtedly be pro-

duced in the r-process and would necessarily outlive 129I because of its 82 m.y.

halflife. It was Rowe and Kuroda(10) who then first obtained experimental indi-

cations of the validity of his assertion. Studying xenon in achondrites, they

detected a prominent excess fissiogenic component which had a characteristic

isotopic pattern. We now know beyond any doubt that this pattern comes from

244Pu. In 1969 a group of us at Berkeley(11 ) succeeded in examining the fission

xenon from a sample of 244Pu produced artificially. The results of that analysis

are shown in Figure 8. Again the horizontal lines show where the peaks would

fall if only atmospheric xenon were present. The excesses, which is to say the

heights of the peaks above these horizontal lines, represent the spectrum of the

fissiogenic sample. One notes that it consists of a small amount of 131Xe



-6-

accompanied by almost equal amounts of 132Xe, 13 and 136Xe. In passing I

would like to mention that the smallest peak in this spectrum, the peak at

mass 128, corresponds to only 3 million atoms, which is an indication of how

sensitive these techniques can sometimes be. Figure 9 shows how well this

isotopic pattern fits the pattern we had previously known from the achondrites.

The dark circles are the values from the artificially prepared sample of 244Pu.

The open circles and squares are from the achondrites Pasamonte and Kapoeta,

respectively. As you can see the match is virtually perfect and differs con-

siderably from the pattern of fissiogenic xenon from another nuclide at mass 244,

244Cu. It is more difficult to utilize 244Pu in a dating scheme because we lack

a reference isotope of Pu which can play the role of 127I. The best we can do

at present is to suppose that the Pu when it was extant was associated in

meteorites with uranium. We can then carry out a dating experiment which is

somewhat analagous to our procedure for the iodine-xenon method. By irradiating

the meteorite with neutrons we produce additional fissiogenic xenon at the

uranium locations. If these locations had also been the locations for plutonium

the effect of the irradiation is to revise the isotopic compositions of the

fissiogenic xenon released from the uranium sites. A successful experiment of
S (12) 130Xe/132Xethis type is shown in Figure 10 where Podosek plotted the ratio Xe/ Xe

134 132
versus the ratio Xe/132Xe for temperature fractions of xenon from an

irradiated sample of the St. Severin meteorite. After correction for spallation

effects (which shifted the points from positions designated by the small circles

to the positions designated by the crosses - these corrections are quite substan-

tial) the points do lie on a line which is intermediate between one given by

fissiogenic xenon from 244Pu and by fissiogenic xenon generated entirely by

pile neutrons acting on uranium. The detailed position of this line enabled
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Podusek to calculate an initial ratio 244Pu/ 38U ol .OL3 for a bulk samlple

of St. Severin. Tentatively we view that number as our best determination up

until now of the ratio for the solar system at the time the meteorites commenced

to retain xenon. So far it has not been possible to obtain quantitative results

of this type for many meteorites as would be needed for dating. The few cases

where success has been obtained do support the idea of general contemporaneity

of meteorites. There is no known contradiction between the iodine-xenon and

the plutonium-xenon dating schemes.

One of the important applications of these results has been to the subject

of cosmochronology. If one were provided with a sufficiently large array of

radioactive nuclides, both extinct and extant, produced in r-process nucleosyn-

thesis, one could in principle deduce in detail the chronological history of

that mode of nucleosynthesis. Figure 11 shown how such a chronology might be

displayed. If we say that the galaxy was born at t - 0 and that the nucleosyn-

thesis which contributed to our solar system went on up until the time T we

could represent the production rate as a function of time by the function p(t).

In the model I have illustrated in the Figure there is shown a large amount of

early nucleosynthesis followed by a modest amount of continuous nucleosynthesis

and terminated by a late spike. I should emphasize that this model is only

illustrative and many others are possible although they must be, as we shall see,

bound by the constraints imposed from abundance measurements for the array of

radioactivities. Following the end of nucleosynthesis there is a dormant period,

A, during which radioactivities decayed but were no longer replenished and ter-

minating with the formation of our contemporaneous array of meteorites. Following

that event by 4.6 aeons is the present. Turning to Figure 12, one sees the

equations for the abundance of radionuclides at the time of formation of the
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meteorites, t = T + A. The equation in the top line simply says that the

amount left at T + A will be the sum of the amounts produced at various times,

t, after taking into account the extent to which radioactive decay will have

diminished those amounts. We use p(t) as before to designate the general rate

of nucleosynthesis and Pi to represent the production factor for the particular

radionuclide in question. Rearranging that equation in the second line, one

sees that the ratio of the abundance Ni to Pi, multiplied by a simple exponen-

tial factor, is equal to a quantity which is a single value of the function

which is essentially the Laplace transform of the production rate p(t). This

tells us that a large number of radionuclides, well distributed as to mean life,

would provide us with the Laplace transform of the production function. But

from the Laplace transform we could deduce the production function as its inverse.

In reality the number of nuclides available for this purpose is quite limited -

the radioactive isotopes of uranium, thorium, rhenium, and the extinct nuclides

1291 and 244Pu that we have been discussing earlier in this report. Thus we can

only deduce a few features of the production function. The principal results

which have been obtained on a relatively firm basis are shown at the bottom of

Figure 12. As Schramm and Wasserburg (13) were first to point out, one of the

important results is a value for the average time for nucleosynthesis -- which

is to say the center of gravity of the production function. We know from the

uranium and thorium isotopes that the average age for r-process material is at

least 8 aeons ago. In addition the results for iodine and plutonium taken

together give quite a firm value of A, 150 m.y. And finally our best value

(above) for the initial abundance in the solar system of 244Pu relative to

uranium suggests that there was not a late spike in the production function.

There has recently been proposed by Reeves (14) an interesting speculation as
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to what might have led to the 150 m.y. interval of dormancy. Reeves points

out that this period is about the time between successive passages of our pre-

solar cloud of dust and gas through the dense spiral arms of our galaxy where

fresh radioactivities would preferentially be added. He suggests that the

last nucleosynthesis coincided with the passage of our cloud through the next

to last spiral arm. The measurements of A, according to this model, are then

measurements of the time we spent cruising between the spiral arm which last

put radioactivities into our cloud and the following spiral arm wherein the

condensation of our Sun was triggered.

I have two final topics I want to touch upon. First I want to mention

that the products of extinct radioactive decay have somewhat surprisingly been

detected in both terrestrial and lunar samples. I am not referring here to

the examples of in situ decay of 244Pu which have been detected both by nuclear

tracks and by xenon measurements in lunar rocks. These results were fully to

be expected simply because of the great antiquity of the lunar rocks in question.

What I am referring to here is the observation of amounts of 129Xe and fissio-

244genic xenon from Pu in certain Apollo 14 breccias where the abundance of

these gases is much higher than can be accounted for by in situ production. This

result was discovered by Drozd et al.(15)in St. Louis and has been confirmed in

our laboratory at Berkeley. Somehow accumulations of xenon which originated in

decay of extinctradionuclides were stored in the Moon before being implanted

in certain special Apollo 14 breccias, the implantation presumably having been

accomplished by shock. An analogous result for the earth was the observation

of anomalous xenon in certain CO2 gas wells in the state of New Mexico. First

observed at Berkeley in 1963(16) this result was beautifully confirmed in 1971

by Boulos and Manuel (17 ) at the University of Missouri at Rolla. Their result
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129
is shown in Figure 13. The excess abundance of Xe Ls completely unamhbiguous

in tlheir work. In addition they see a fissiogenic component which may 1w iin

part from 24Pu. More measurements are needed before we can be sure about the

plutonium fossil. Again the place of storage for these xenon samples is unknown.

Finally let me refer to the anomalous fissiogenic xenon we have seen in

the carbonaceous .chondrites Renazzo and Murray. In the middle range of tempera-

tures in a step-wise heating extraction, a pronounced fission-like component was

(18)
seen in both these meteorites. We see in Figure 14 for Renazzo that the

effect takes the form of simultaneous increases in the relative abundances of

134Xe and 136Xe. A similar result is seen for Murray in Figure 15. We have

known for many years now that the isotopic pattern for this fission-like component

differs in these carbonaceous stones from other fissiogenic patterns. The origin

of this component is still unknown. For a time it was attractive to attribute it

to fission of a super-heavy element. Such an element could be both fissiogenic

and volatile and therefore might be selectively concentrated in the carbonaceous

(19)
chondrites as suggested by Heymann and Anders and on other grounds by

Dakowski!20) Theorists who study the likelihood that such a super-heavy nuclide

(21)
could be produced in the r-process seem lately to be very doubtful. It may

be that the anomalous xenon component in the carbonaceous chondrites is somehow

(22)
related to the anomalous oxygen that Clayton and his co-workers, whose talk

follows mine, have recently detected in non-hydrous minerals in carbonaceous

chondrites. They have convinced us that the anomalous oxygen is of a nuclear

and not a chemical origin; it may represent material from interstellar grains

which were not mixed isotopically with the rest of the solar system. If this

indeed was the case, these grains may have contributed anomalous xenon as well.

Clearly these unanswered questions are much in our minds in the ongoing research.
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Figure Captions

Figure 1. Mass spectrum for xenon extracted from the Richardton chondrite.

The short horizontal lines mark where the peaks would fall if the sample

were xenon from the atmosphere. By far the most marked anomaly is an
129

excess at mass 129 due to radioactive decay of extinct I.

Figure 2. An isotope correlation plot for xenon from stepwise heating of

a neutron-irradiated sample of the Shallowater achondrite. The numerals

marking the points are extraction temperatures in hundreds of degrees.' Above

1000oC there is a good correlation between the release of excess 129Xe from

decay of extinct 129I and excess 128Xe produced from 127I during the irra-

diation. From diagrams of this type the initial 129 1/127I ratio for the

meteorite can be determined precisely. Work of Hohenberg (reference 3).

Figure 3. Correlations (see caption for Figure 2) for two meteorites which

have different initial 129 1271 ratios as evidenced by the difference in

slope. The difference in time of formation inferred for these two meteorites

is 7.5 m.y. with the Karoonda carbonaceous chondrite (petrologic type-4)

antedating the achondrite Peiia Blanc Spring. Work of Podosek (reference 4).

Figure 4. An array of I-Xe ages assembled by Podosek (reference 4) in 1970.

The formation times for very diverse meteorites, including a silicate inclu-

sion from the iron meteorite El Taco, all lie within a span of 14 m.y.

Figure 5. Another time difference inferred by the I-Xe dating method.i A

good correlation was obtained for magnetite from the type-1 carbonaceous

chondrite Orgueil. Orgueil is the most ancient object yet dated by this

method but precedes Karoonda (see Figure 3) by only 1.8 m.y. Work of Herzog

et al. (reference 6).

Figure 6. An interesting case where an iodine-xenon correlation was not

observed. The chondrite Manych is essentially an assemblage of fresh chon-

drules. The iodine-xenon data suggest that these chondrules were not all

formed at the same time. The excellent correlation for Abee is shown for

contrast. Work of Podosek and Hohenberg (reference 7).



Figure 7. Evidence of the durability of the iodine-xenon correlation in the

enstatite chondrite Abee. A preheating of the stone to 12000 C before the

neutron irradiation removed 90% of the xenon but did not alter the quality

or magnitude of the correlation with iodine for that xenon still remaining

in the stone. In the Abee stone the iodine-xenon clock seems to be almost

impossible to reset by simple heating. Work of Hohenberg and Reynolds (ref-

erence 8).

Figure 8. Isotopic composition of xenon from spontaneous fission of an arti-

ficially prepared sample of 244Pu. The short horizontal lines indicate the

contributions from air contamination. The small peak from air at mass 128

results from 3 million atoms. Work of Alexander et al. (reference 11).

Figure 9. Agreement between the isotopic pattern for xenon from spontaneous

fission of 244Pu (see Figure 8) and fissiogenic xenon found in achondrites.

By this comparison existence of 244Pu as a bona fide extinct radioactivity was

confirmed. Work of Alexander et al. (reference 11).

244
Figure 10. Evidence for an association between uranium and Pu in the chon-

drite St. Severin. The correlation plot is for xenon extracted in stepwise

heating from a neutron irradiated sample. The points have been corrected as

indicated for spallation xenon resulting from galactic cosmic rays. The corre-

lated high temperature points define a line intermediate between the lines

obtained by mixing trapped xenon with (1) xenon from P244u fission and (2) xenon

from neutron-induced fission of 235U. The position of the intermediate line

fixes the initial 244Pu/238U ratio in the sample at 0.013. Work of Podosek

(reference 12).

Figure 11. An illustrative model for r-process nucleosynthesis.

Figure 12. Equations for the abundances in newly formed meteorites of radio-

active nuclear species produced in the r-process. Some inferences about solar

system cosmochronology are also stated.



FlgurLr L3. IsoLopic composition of xenon From a CO2 gas well inI New Nvxic,.
129

The excess Xe is unambiguous. The fissiogenic xenon may be In part from
244u. Work of Boulos and Manuel (reference 17).

Figure 14. Evidence for an anomalous fission-like component in the Renazzo

carbonaceous chondrite. The component is released in a mid-temperature range.

Work of Reynolds and Turner (reference 18).

Figure 15. Occurrence of the anomalous fission-like component of xenon in the

Murray carbonaceous chondrite. Again the component is released in a mid-

temperature range.
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